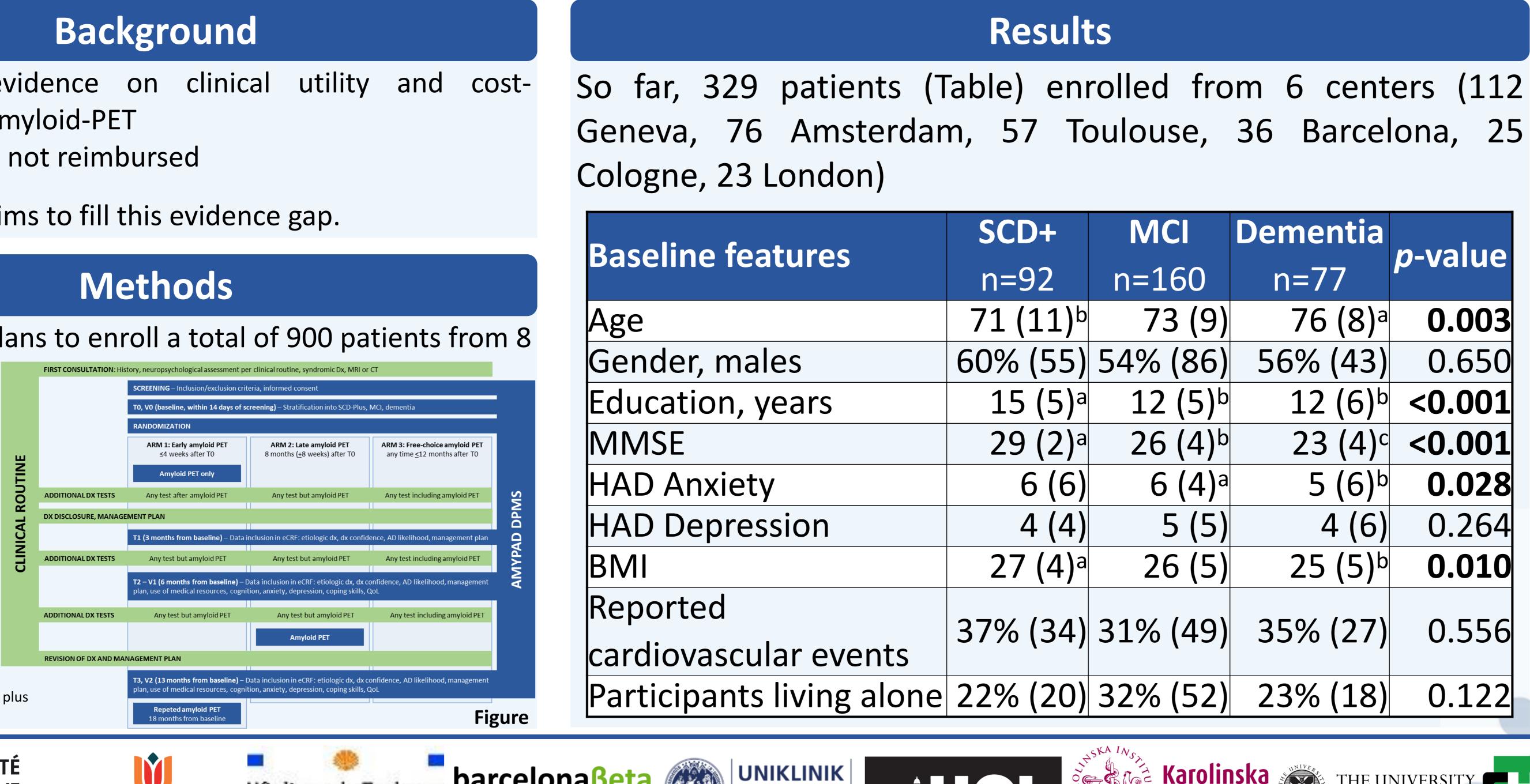


¹Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland. ²Memory Clinic, University of Cologne and DZNE, Germany. ⁶GE Healthcare, Amersham, United Kingdom. ⁷Piramal Imaging, Berlin, Germany. ⁸Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain. 9CIBER-BBN, Madrid, Spain. 10Karolinska Institutet, Stockholm, Sweden. 11Karolinska University of Toulouse, France. 13University of Edinburgh, UK. 14Janssen Pharmaceutica NV, Beerse, Belgium

definitive evidence clinical No utility on effectiveness of amyloid-PET \rightarrow Amyloid-PET is not reimbursed

AMYPAD-DPMS aims to fill this evidence gap.


Amsterdam UMC 🔳

AMYPAD-DPMS plans to enroll a total of 900 patients from 8

memory clinics

- 300 SCD+*
- 300 MCI°
- 300 dementia

Patients will be randomized into the 3 study arms (Figure).

*SCD+: subjective cognitive decline plus °MCI: mild cognitive impairment

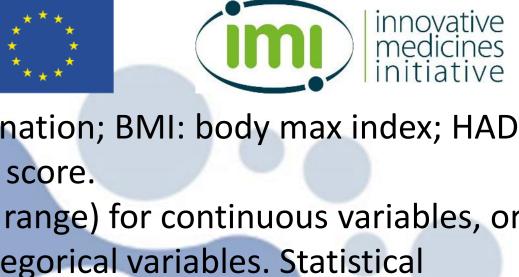
AMYPAD-DPMS preliminary results: participants' baseline features

Daniele Altomare^{1,2}, Frederik Barkhof^{3,4}, Johannes Berkhof³, Marina Boccardi¹, Elisa Canzoneri^{1,2}, Lyduine Collij³, Alexander Drzezga⁵, Gill Farrar⁶, Valentina Garibotto^{1,2}, Rossella Gismondi⁷, Juan-Domingo Gispert^{8,9}, Frank Jessen⁵, Miia Kivipelto^{10,11}, Isadora Lopes Alves³, José Luis Molinuevo⁸, Christian Moro^{1,2}, Agneta Nordberg^{10,11}, Pierre Payoux¹², Léa Poitrine^{1,2}, Nicola Raffa⁷, Craig Ritchie¹³, Irina Savicheva¹¹, Philip Scheltens³, Mark E Schmidt¹⁴, Jonathan Schott⁴, Bart van Berckel³, Bruno Vellas¹², Zuzana Walker⁴, Andrew Stephens⁷, Giovanni B Frisoni^{1,2}

<i>p</i> -value	Dementia	MCI
	n=77	=160
0.003	76 (8) ^a	73 (9)
0.650	56% (43)	1% (86)
<0.001	12 (6) ^b	12 (5) ^b
<0.001	23 (4) ^c	26 (4) ^b
0.028	5 (6) ^b	6 (4) ^a
0.264	4 (6)	5 (5)
0.010	25 (5) ^b	26 (5)
0.556	35% (27)	L% (49)
0.122	23% (18)	2% (52)

Karolinska Institutet of EDINBURGH

Conclusion


Participants' features are as clinic expected for а memory population \rightarrow The inclusion criteria are selecting a sample representative of the larger memory clinic population This observation reassures on the generalizability of the final study results

Table

etpia

MMSE: Mini-Mental State Examination; BMI: body max index; HAD: Hospital Anxiety and Depression score. Values are median (interquartile range) for continuous variables, or percentage (raw number) for categorical variables. Statistical analyses: Kruskal-Wallis rank sum test for continuous variables, chisquared test for categorical variables. Post-hoc: a > b > c.

> Acknowledgements: This work has received support from the EU-EFPIA **Innovative Medicines Initiatives 2** Joint Undertaking (grant No 115952).

CONTACT Daniele.Altomare@unige.ch www.amypad.eu