Alzheimer's Disease

Voxel-based amyloid PET staging along the Alzheimer's disease continuum

G Salvadó*¹. L Collij*². A Niñerola-Baizán³. A Perissinotti³. W van der Flier². PW Visser². P Scheltens². H Zetterberg⁴-⁶. K Blennow⁴.

F Barkhof^{2.5}. JL Molinuevo^{1.7.8}. I Lopes-Alves*². JD Gispert*^{1.8.9}. *ALFA study. ADNI. on behalf of the AMYPAD Consortium*

(1)) BarcelonaBeta Brain Research Center. Pasqual Maragall Foundation. Barcelona. Spain; (2) Amsterdam UMC, VUmc, Amsterdam, Netherlands; (3) Hospital Clínic. Barcelona. Spain; (4) Sahlgrenska University Hospital. Mölndal. Sweden; (5) University College London. London. UK;

Background

Regional staging of amyloid PET scans has advantages to global PET dichotomization because it is able to identify earlier pathology and to assess a more detailed risk for each participant.

However, current relies on atlas-based regions of interest (ROI) approaches and global cut-offs to assess amyloid abnormality [1-3].

To create a voxel-wise staging model for amyloid burden without a priori bias for regional segmentation nor global cut-offs

Material and Methods

Participants:

A total of 870 amyloid PET scans from four different cohorts: ALFA [4], EMIF-AD [5], ADC [6] and ADNI comprising the whole AD continuum and scanned with two amyloid tracers ([18F]flutemetamol, and [¹⁸F]florbetapir)

Construction of the model:

The model was constructed by 4 steps (Figure 1) by using the scans of 224 cognitively normal (CN) participants from the ALFA cohort

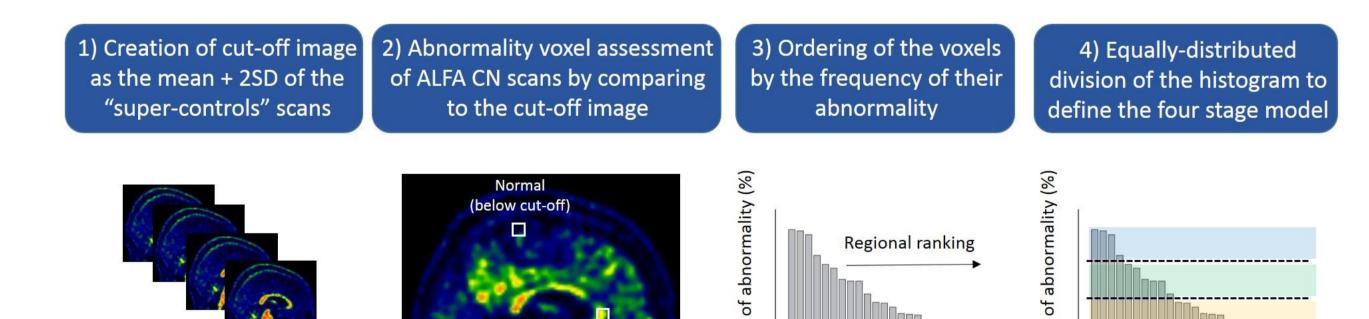
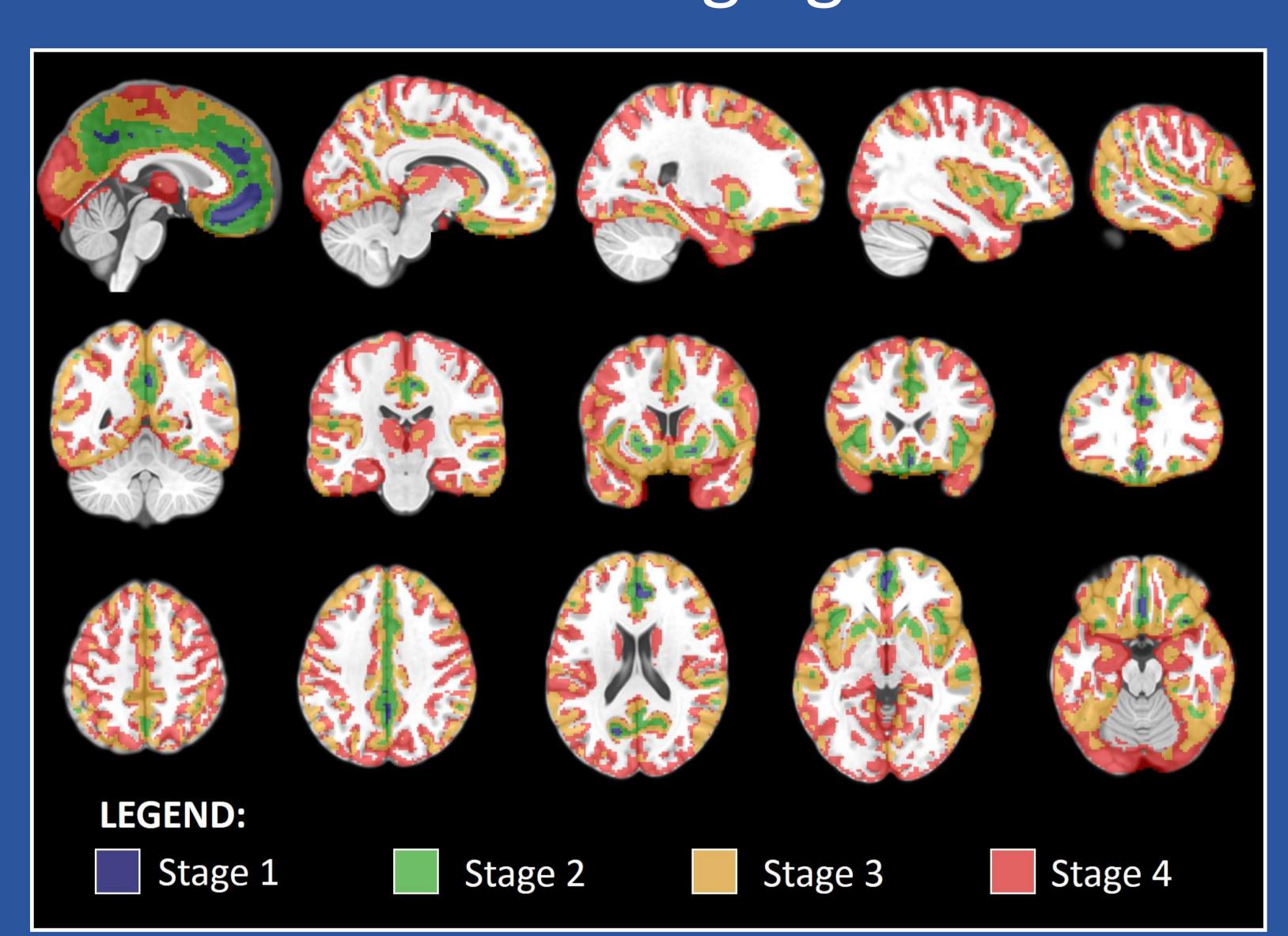


Figure 1: Summary of the model construction


Stage participants:

We applied the model constructed (central figure) to all available amyloid PET scans. For each scan, a particular stage was considered if: 1) >50% of the voxels of that stage was abnormal; and 2) the previous stages were also positive. If the second condition was not fulfilled the scan was classified as "unstageable".

Assessment of the model's performance:

Finally, the model's performance was evaluated by assessing the number of unstageable scans and the correlation between stage classification and CSF biomarkers as well as MMSE scores (by Speaman's rho correlation, p<0.001).

Voxel-wise staging model

The derived model correlated with CSF core AD biomarkers and MMSE

	ALFA	EMIF-AD	ADC	ADNI
	(n=224)	(n=190)	(n=145)	(n=311)
Αβ ₄₂	-0.45***	-0.34***	-0.69***	-0.55***
pTau	0.30***	0.37***	0.59***	0.49***
pTau/Aβ ₄₂ ratio	0.56***	0.41***	0.72***	0.62***
$A\beta_{40}/A\beta_{42}$ ratio	NA	-0.25**	NA	NA
MMSE	0.03	-0.15*	-0.30***	NA

Spearman's rho correlation values between stages and CSF core AD biomarkers and between stages and MMSE. *** p<0.001; ** p<0.005; *p<0.05

Results

	All (n=870)	ALFA "super- controls" (n=35)	ALFA (n=224)	EMIF-AD (n=190)	ADC (n=145)	ADNI (n=311)
Age, years, mean (SD)	68.1 (8.7)	58.6 (4.2)	61.1 (4.8)	70.5 (7.6)	62.2 (5.6)	74.5 (7.1)
Sex, Female, n (%)	476 (54.7)	21 (60.0)	146 (64.6)	112 (58.9)	66 (45.5)	152 (48.9)
APOE-ε4 carriers, n (%)	428 (50.4)*	8 (22.9)	88 (38.9)	74 (38.9)*	87 (63.5)*	179 (57.6)
MMSE, mean (SD)	27.6 (3.1)*	29.1 (1.0)	29.2 (1.0)	29.0 (1.1)	23.4 (3.3)	-
Diagnsosis, n (%)						
CN	468 (53.8)	35 (100.0)	224 (100.0)	190 (100)	3 (2.1)	51 (16.4)
MCI	2247 (28.4)	0 (0.0)	0 (0.0)	0 (0.0)	10 (6.9)	237 (76.2)
AD	107 (12.3)	0 (0.0)	0 (0.0)	0 (0.0)	84 (57.9)	23 (7.4)
non AD	48 (5.5)	0 (0.0)	0 (0.0)	0 (0.0)	48 (33.1)	0 (0.0)
Amyloid PET tracer	-	[18F]flutemetamol	[¹⁸ F]flutemetamol	[¹⁸ F]flutemetamol	[18F]flutemetamol	[¹⁸ F]florbetapir
Stages, n(%)						
Normal	340 (39.1)	35 (100.0)	190 (84.2)	63 (33.2)	46 (31.7)	41 (13.2)
1	118 (13.6)	0 (0.0)	12 (5.4)	75 (39.5)	9 (6.2)	22(7.1)
2	113 (13.0)	0 (0.0)	14 (6.3)	38 (6.8)	10 (6.9)	51 (16.4)
3	233 (26.8)	0 (0.0)	8 (3.6)	13 (6.8)	53 (36.6)	159 (51.1)
4	66 (7.6)	0 (0.0)	0 (0.0)	1 (0.5)	27 (18.6)	38 (12.2)

Table 1: Demographics and stage classification by cohort

- The model was able to stage all 870 included scans covering the whole AD continuum with three different amyloid tracers (Table 1)
- First areas to become abnormal: anterior cingulate, orbitofrontal and precuneus (central figure)
- The staging levels correlated highly with $A\beta_{42}$ but also with progression markers as pTau/A β_{42} ratio and cognition by means of MMSE in the cohort including AD patients (central table)

Conclusions

The presented voxel-wise model circumvents the need for pre-established global cut-offs. The strong correlation between stages and $A\beta_{42}$ suggests that this model could be used to detect early amyloid accumulation. Moreover the significant correlation with pTau/A β_{42} ratio also suggests that this model might be useful to monitor not only amyloid load, but the whole AD continuum.

Acknowledgements

The research leading to these results has received funding from "la Caixa" Foundation (LCF/PR/GN17/10300004) and the Alzheimer's Association and an international anonymous charity foundation through the TriBEKa Imaging Platform project. Authors would like to thank GE Healthcare for kindly providing [18F]flutemetamol doses of ALFA+ participants and Roche Diagnostics International Ltd. for kindly providing the kits for the CSF analysis of ALFA+ participants.

References: [1] Grothe et al., Neurology (2017); [2] Hanseeuw, et al., Alz & Dem (2018); [3] Collij, et al., AAIC (2018); [4] Molinuevo et al., Alz & Dem TRCI (2016); [5] Konijnenberg et al., Alz Res Ther (2018); [6] van der Flier et al., J Alz Dis (2018)

Academic partners

