

Visual assessment of [¹⁸F]flutemetamol PET images can detect early amyloid pathology and grade its extent

L.E. Collij, G. Salvadó, M. Shekari, I. Lopes Alves, J. Reimand, A.M. Wink, M. Zwan, Aida Niñerola-Baizán, Andrés Perissinotti, P. Scheltens, G. Farrar, J.L. Molinuevo2, F. Barkhof, C. Buckley, B.N.M. van Berckel & J.D. Gispert

AAIC 2020

Policies

Ŭ

Screen-shots are Photography is welcome in this presentation.

The information included in this presentation may be shared on other platforms.

Video and audio recording are prohibited.

Disclosure(s)

- C Buckley and G Farrar are GE Healthcare employees.
- All other authors have nothing to disclose.

Featured Research Session

The value of amyloid PET beyond dichotomization

Speaker Chatroom Q&A - Scheduled Time Date: 28 July 2020 Time: 7:30 AM - 7:55 AM (U.S. Central Time) A separate video-chat room will also be made available

- 1. A multi-study analysis of the spatial-temporal progression of amyloid deposition and its utility for longitudinal studies (I. Lopes Alves)
- 2. Examining Centiloid quantification against visual assessment using [¹⁸F]flutemetamol PET (L.E. Collij)
- 3. Converging evidence for a "gray-zone" of amyloid burden and its relevance (S. Bullich)
- 4. Emerging beta-amyloid pathology is associated with tau, synaptic, neurodegeneration and gray matter volume differences (JL Molinuevo)

Visualizing the spatial-temporal ordering of amyloid

- Amyloid staging models to capture regional amyloid deposition¹:
 - 4 stages were defined from N=400 CN scans across 4 tracers to ensure between-tracer applicability
 - Successfully applied to 99% of *N*=4783 scans

Visualizing the spatial-temporal ordering of amyloid

- Amyloid staging models to capture regional amyloid deposition¹:
 - 4 stages were defined from N=400 CN scans across 4 tracers to ensure between-tracer applicability
 - Successfully applied to 99% of *N*=4783 scans

- Can we visually identify 'stages'?
- Visual read (VR) in clinical routine:
 - Generally, only the final classification (negative/positive) is documented
 - Guidelines were developed to capture established pathology in clinical populations → considered conservative

- Centiloid (CL) method: harmonization of amyloid PET data¹
 - 0 CL = young controls & 100 CL = early AD dementia
- CL vs. *post-mortem* and CSF:
 - 12 CL = early amyloid pathology^{2,3,4}
 - 24-30 CL = established amyloid pathology^{2,3,4}

Centiloid against Visual Read

- CL vs. VR:
 - Cut-offs higher compared to *post-mortem* and CSF (i.e. CL=24-42)^{1,2,3}

- Limitations in current literature:
 - Limited number of subjects in the gray-zone band (CL = 12-30)
 - Mainly clinical and end-of-life populations

www.amypad.eu

1) Amadoru et al., 2020 2) Battle et al., 2019 3) Hanseeuw et al., 2020

Pooled [¹⁸F]flutemetamol scans of two complementary cohorts that allowed us to cover both early and established pathology

- 1. Investigate the agreement between VR and CL-based classification of amyloid PET scans using previously proposed cut-offs for early (CL=12) and established (CL=30) amyloid pathology.
- 2. Characterize and assess the utility of <u>regional</u> VR positivity to stage amyloid burden across the AD *continuum*.

- 497 [¹⁸F]flutemetamol scans:
 - 352 cognitively unimpaired (for ALzheimer's and Families (ALFA+) cohort)
 - 145 cognitively impaired (Dutch Flut Study Amsterdam Dementia Cohort [ADC])
- Visual assessment:
 - According to GE guidelines
 - Final classification (negative/positive)
 - Regional read for 5 ROIs
 - Frontal
 - PC/PCC
 - Lateral temporal
 - Temporo-parietal
 - Striatum
- Quantification:
 - Standard Centiloid (CL) pipeline

	Pooled (N = 497)	ALFA+ CU population (N = 352)	ADC Clinical Population (N = 145)	p-value	
Age (years)	61.7 ± 4.9	61.5 ± 4.6	62.2 ± 5.6	n.s.	
Sex F (%)	281 (56.5%)	215 (61.1%)	66 (45.5%)	<0.01	
MMSE	27.2 ± 3.5	29.2 ± 1.0	23.4 ± 3.4	<0.01	
APOE ε4 carriership	280 (56.3%)	193 (54.8%)	87 (60.0%)	n.s.	
Centiloid	18.7 ± 38.8	2.9 ± 17.2	56.8 ± 48.9	<0.01	
VR+	144 (29.0%)	49 (13.9%)	95 (65.5%)	<0.01	

Statistical analyses

Only the assessment of Reader 1 was available for the majority of cases (N=447) Majority visual read was available for a sub-set (N=50).

VR vs CL classification

- Kappa statistics: VR against CL cut-offs of early (CL=12) and established (CL=30) amyloid pathology
- ROC analysis: identify CL cut-off using VR as the reference (Youden's J Index)

Statistical analyses

Only the assessment of Reader 1 was available for the majority of cases (N=447) Majority visual read was available for a sub-set (N=50).

VR vs CL classification

- Kappa statistics: VR against CL cut-offs of early (CL=12) and established (CL=30) amyloid pathology
- ROC analysis: identify CL cut-off using VR as the reference (Youden's J Index)

Regional VR vs CL burden

- One-way ANOVA: differences in CL burden depending on number of visually positive regions and VR stages.
- Chi-squared tests: distribution of VR stages across clinical diagnosis.

RESULTS

VR shows excellent agreement with CL-based classification

CL=30 cut-off (established pathology)¹: κ=.87 100%/93.1% sens/spec CL=12 cut-off (early pathology)²: κ=.88

86.5%/99.1% sens/spec

Subjects

1) Salvadó et al., 2019 2) La Joie et al., 2019 3) Su et al., 2018

VR shows excellent agreement with CL-based classification

CL=30 cut-off (established pathology)¹: κ=.87 100%/93.1% sens/spec

CL=12 cut-off (early pathology)²: κ=.88 86.5%/99.1% sens/spec

CL=17 cut-off:

ROC analyses with VR as reference 93.9%/98.2% sens/spec AUC of .996 (95% CI: .993-.999) Youden index: 0.936

Note, CL quantification is dependent on local processing³ \rightarrow range of cut-off between 14-20.

www.amypad.eu

1) Salvadó et al., 2019 2) La Joie et al., 2019 3) Su et al., 2018

Gray-zone zoom in

ROC results

Gray-zone zoom in

ROC results

Intra- and inter-reader agreement

- Selected 50 scans: emphasis on gray-zone subjects
- Intra- and inter-reader agreement was good (k=.68)¹
- Scans with a CL~25 are generally classified as VR+ across all readers.²
- 7/11 of scans with a CL 17-25 were also classified as VR+ by at least 2 out of 3 readers.

Number of visually+ regions relates to CL values

It can be clinically relevant to visually capture the *extent* of amyloid burden in addition to negative/positive classifications.

Number of visually+ regions relates to CL values

It can be clinically relevant to visually capture the *extent* of amyloid burden in addition to negative/positive classifications.

1 region VR+: emerging amyloid pathology^{1,2,3}

2 regions VR+: established amyloid pathology^{1,3}

3 regions VR+: predictive for clinical progression⁴

4&5 regions VR+: representative of clinical dementia population^{5,6}

Count

Regional visual read patterns

ADC

ALFA+ 2 regions VR+ 3 regions VR+

1 region VR+ 4 regions VR+ 5 regions VR+ 80 60 40 20 0 Frontal+ PC/PCC+ Temporal+ Frontal+ PC/PCC+ Frontal+ Frontal+ Frontal+ Frontal+ Frontal+ PC/PCC+ Temporal+ PC/PCC+ PC/PCC+ PC/PCC+ PC/PCC+ PC/PCC+ Temporal+ Striatum+ Temporal+ Temporal+ Temporal+ Striatum+ Parietal+ Parietal+ Striatum+ **Regional visual positivity**

Frontal and PC/PCC regions were read positive most often (27.4% and 27.2%) followed by lateral temporal (21.7%), temporoparietal (18.5%), and striatal region (16.7%)

Suggests general ordering:

- VR stage 1: Frontal *or* PC/PCC
- VR stage 2: Frontal *and* PC/PCC
- VR stage 3: Positivity beyond these regions ٠

Regional visual read patterns

Frontal and PC/PCC regions were read positive most often (27.4% and 27.2%) followed by lateral temporal (21.7%), temporoparietal (18.5%), and striatal region (16.7%)

Suggests general ordering:

- VR stage 1: Frontal *or* PC/PCC
- VR stage 2: Frontal *and* PC/PCC
- VR stage 3: Positivity beyond these regions

VR stages strongly related to Dx

IYPAD Integrating our results

Frontal	-	+	+	0 – 0	+	+	+	+	+	+
PC/PCC	-		-	+	+	+	+	+	+	+
Lat.Temporal	-	-	-	-		-	+	+	+	+
Parietal	-			-	-	-	-	-	+	+
Striatum	-		= - (-	-	-	-	+	+	+
Centiloid	2	17	19	27	32	35	38	47	57	81
	VR- VR+ Stage 1			VR+ Stage 2		VR+ Stage 3				

- Sagittal plane seems optimal for assessing early amyloid pathology
 - Medial orbitofrontal cortex and precuneus/posterior cingulate cortex

- Sagittal plane seems optimal for assessing early amyloid pathology
 - Medial orbitofrontal cortex and precuneus/posterior cingulate cortex
- Importance of these regions supported by amyloid staging work^{1,2,3} and recent review on spatial-temporal ordering of amyloid pathology⁴
- Sensitivity of medial regions is partly influenced by signal distortion⁵:
 - Proximity to white matter and signal from the contralateral hemisphere
 - Medial regions are visually more frequently classified as abnormal compared to lateral counterparts, while levels of pathology are comparable.

- Sagittal plane seems optimal for assessing early amyloid pathology
 - Medial orbitofrontal cortex and precuneus/posterior cingulate cortex
- Importance of these regions supported by amyloid staging work^{1,2,3} and recent review on spatial-temporal ordering of amyloid pathology⁴
- Sensitivity of medial regions is partly influenced by signal distortion⁵:
 - Proximity to white matter and signal from the contralateral hemisphere
 - Medial regions are visually more frequently classified as abnormal compared to lateral counterparts, while levels of pathology are comparable.
- Regional VR is robust across readers:
 - Frontal 74% (37/50), PC/PCC 78% (39/50), temporo-parietal 78% (39/50), lateral temporal 82% (41/50), and striatum 74% (37/50).

General conclusion

Similar to Centiloid quantification, VR can capture early amyloid pathology and the extent of amyloid burden.

General conclusion

Similar to Centiloid quantification, VR can capture early amyloid pathology and the extent of amyloid burden.

Clinical routine

Documenting the *extent* of amyloid burden could be a valuable asset in addition to the final read classification of amyloid negative/positive.

Research and trials

Readers could benefit from focusing on the *medial regions*, using the sagittal view as the primary orientation for visual assessment of early amyloid pathology.

General conclusion

Similar to Centiloid quantification, VR can capture early amyloid pathology and the extent of amyloid burden.

Clinical routine

Documenting the *extent* of amyloid burden could be a valuable asset in addition to the final read classification of amyloid negative/positive.

Research and trials

Readers could benefit from focusing on the *medial regions*, using the sagittal view as the primary orientation for visual assessment of early amyloid pathology.

Future work: generalizability

Differences between radiotracers include reader 'signs', use of different color scales, and possibly distinct influence of WM uptake in the distortion of the PET signal in medial regions.

AMYPAD consortium

Gemma Salvadó Blasco

Bart N.M. van Berckel

Chris Buckley

Mark Schmidt

Jorge Cardoso Maqsood Yaqub Fiona Heeman

Silvia Ingala

Alle Meije Wink

Ronald Boellaard

Adriaan Lammertsma

Philip Scheltens

Isadora Lopes Alves Pawel Markiewicz

Gill Farrar

Frederik Barkhof

Juan Domingo Gispert Lopéz

Amsterdam UMC

GE Healthcare

barcelonaβeta

BRAIN RESEARCH CENTER

"The project leading to this application has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 115952. This Joint Undertaking receives the support from the European Union's Horizon 2020 research and innovation programme and EFPIA".

www.amypad.eu

http://www.imi.europa.eu 29

Featured Research Session

The value of amyloid PET beyond dichotomization

Speaker Chatroom Q&A - Scheduled Time Date: 28 July 2020 Time: 7:30 AM - 7:55 AM (U.S. Central Time) A separate video-chat room will also be made available

- 1. A multi-study analysis of the spatial-temporal progression of amyloid deposition and its utility for longitudinal studies (I. Lopes Alves)
- 2. Examining Centiloid quantification against visual assessment using [¹⁸F]flutemetamol PET (L.E. Collij)
- 3. Converging evidence for a "gray-zone" of amyloid burden and its relevance (S. Bullich)
- 4. Emerging beta-amyloid pathology is associated with tau, synaptic, neurodegeneration and gray matter volume differences (JL Molinuevo)