

Fiona Heeman¹, Janine Hendriks¹, Isadora Lopes Alves¹, Nelleke Tolboom², Bart N.M. van Berckel¹, Maqsood Yaqub¹, Adriaan A. Lammertsma¹ ¹Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, ² Imaging Division, Department of Radiology, UMC Utrecht

Introduction

- Reductions in CBF are characteristic for Alzheime (AD) and could be used as proxy for disease progression.^{1,2}
- Moderate-to-high correlations have been reporte $[^{11}C]PiB$ PET derived R_1 (relative tracer delivery [¹⁵O]H₂O CBF, thus, it has been suggested that used as proxy for relative CBF³
- Longitudinal PET studies become more comm therefore it is important to understand the variabi determine what magnitude of change signifies change.

Purpose

Assess precision of [¹¹C]PiB R₁ through retrospective analysis of a test-retest data-

Methods

Subjects & Image acquisition

- 12 participants from a test-retest (TRT) st $(Table 1)^4$
- Dynamic [¹¹C]PiB PET 90 minutes and T1

Image processing and analysis

The simplified reference tissue with (SRTM2) was used (with cerebellar gr region) to derive R_1 values for a global smaller cortical regions

Statistics

Test-retest variability was calculated (equa for all regions

 $TrT \ variability \ (\%) = \frac{|T-R|}{0.5 \cdot |T+R|} \cdot 100$

Correlation, Linear Mixed Effects Models Bland-Altman analysis were used to asses correlations and variability between test and retest measures.

Test-retest variability of relative tracer delivery rate as measured by [¹¹C]PiB

Results

er's disease severity or
ed between / rate) and R ₁ could be
non in AD, ility of R ₁ to 5 an actual
set
tudy
MR scans
n fixed k_2' n reference cortical and
ation 1)
(1)
(LME) and ss the

Test and retest R_1 values were strongly correlated and the slope was not significantly different from 1 (R^2 =0.92, slope=0.98 C.I.[0.94-1.01], p<0.001). Bland-Altman analysis showed a (0.69 \pm 3.07%) between test and retest R_1 (Figure 1).

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme and EFPIA.

TABLE 1. Subject demographics

	CU (<i>N=</i> 5)	MCI (<i>N=</i> 1)	AD (<i>N=</i> 6)	
Age	64.6 ±6.4	71.0	61.0 ±3.0	
Females	60%	100%	17%	
VR positive	20%	0%	100%	
MMSE	29.8 ±0.4	28.0	20.7 ±2.0	

VR: Visual read, MMSE: Mini Mental State Examination, Values are depicted as Mean±SD, unless indicated otherwise

- Relative tracer delivery R_1 was significantly lower in AD dementia patients compared with cognitively unimpaired participants (p< 0.01), Table 2.
- TRT variability was low for a global cortical region (1.70%), while the range of regional TRT variability was slightly higher (1.5-5.8%).

TABLE 2. Relative tracer delivery values by diagnostic group

	SRTM2 derived- R ₁		
Diagnostic groups	Test	Retest	
CN (<i>N</i> =5)	0.93 ± 0.04	0.91 ± 0.03	
MCI (<i>N</i> =1)	0.91	0.91	
AD (<i>N</i> =6)	0.82 ± 0.04	0.82 ± 0.03	

Values are depicted as Mean±SD

- negligible bias

Figure 1. Relationship between SRTM2-derived test and retest R₁ (a) The correlation between R_1 test and retest measures, with R^2 and slope parameters corresponding to the LME analysis and (b) a Bland-Altman plot, which indicates the bias between the two measures.

 \checkmark [¹¹C]PiB relative tracer delivery rate R_1 showed high global and regional precision in participants covering the AD spectrum. Therefore, [¹¹C]PiB R₁ appears to be a stable parameter for measuring cross-sectional differences and longitudinal changes in relative CBF.

1. Ottoy et al. (2019) Alzheimers&Dement 2. Wierenga et al. (2014) J Alzheimers Dis. 42:S411-S419. 3. Chen et al. (2015) J. Nucl Med 56(8): 1199-1205. 4. Tolboom et al. (2009) Eur J Nucl Med Mol Imaging;36:1629-1638.

Conclusion

Contact: f.heeman@amsterdamumc.nl