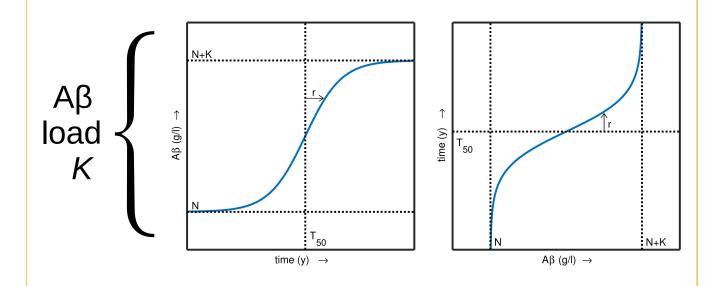
Quantifying AD-related brain amyloid with linearised progression models: model-based vs. data-based

Alle Meije Wink¹, Mahnaz Shekari², Ellen Dicks¹, Lyduine Collij¹, Gemma Salvadó³, David Vállez Garcia¹, Juan Domingo Gispert², Betty Tijms¹, Isadora Lopes Alves¹, Maqsood Yaqub¹, Frederik Barkhof^{1,4} ¹Amsterdam University Medical Centre ²Barcelonaßeta Brain Research Centre ³Lund University ⁴University College London

Introduction


Background

- The main biomarker for early AD is brain amyloid (A β)
- In a logistic progression model, biomarker curves are sigmoids see figure
- If the A β time curve has global shape it is a whole-brain regressor / predictor
- For Aβ PET images aligned wrt AD onset a global curve can serve as regressor

Voxelwise maps of these regressors show regional Aβ uptake capacity during AD (NS for baseline, K for capacity, Whittington 2018) In a spatial regression of an A β PET image with NS and K, weights of K can be used to estimate time since AD onset.

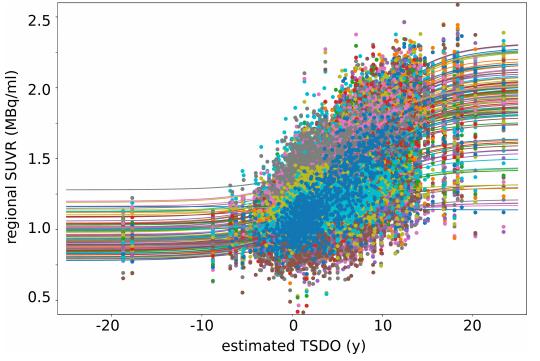
But this model uses the biomarker curves twice: (i) to order scans by TSO, and (ii) to estimate local model values.

We propose a data-driven alternative for load *K* to quantify SUVR maps of Aβ accumulation from TSDO-synchronised scans and demonstrate its validity in clinical studies.

Methods

Data sets: cross-sectional

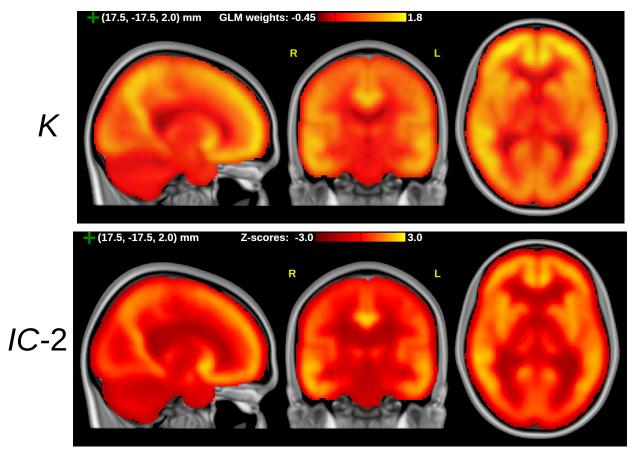
- model estimation: ADNI-2*: ¹⁸F-florbetapir HC/SCD/MCI/AD MCI: e(arly)MCI,MCI,I(ate)MCI
- cognitive evaluation (see Collij 2021) OASIS-3[§]: ¹²C-PiB HC


Preprocessing

• SUVR computed; reference: cerebellar grey matter

• SUVR mapped to the MNI space at 2 mm³ resolution

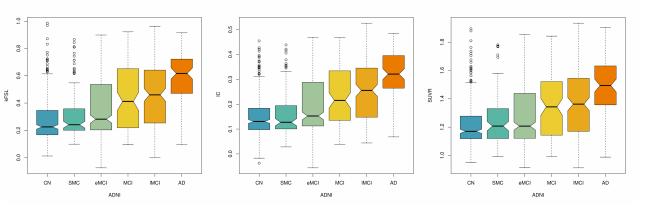
Verify validity of a global $A\beta$ time curve


- use logit (inverse sigmoid) to obtain time since AD onset from mean cortical SUVR
- compare 16 models with regional sigmoid K, N, T_{50} and r, optimised globally or locally
- best model: global T_{50} and r, local K and Nbased on Bayesian information criterion using python3 package Imfit¹

n = 1071 *n* = 329

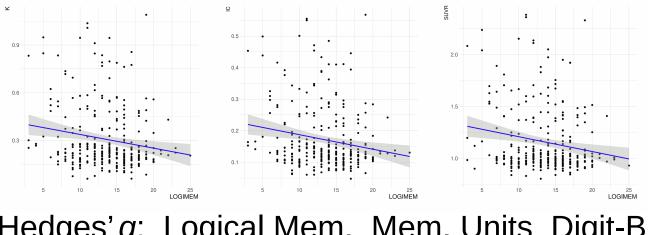
• map of *K* compted as in (Whittington 2018) • 2-components ICA on aligned SUVR maps • map *IC*-2: very similar to that of K (r = 0.86)

Data-driven estimation of weight maps


Model comparions Statistical analyses used R 3.6.2[‡].

Effect size in for separating ADNI subgroups Separations of ADNI groups were computed using weights of K, corresponding component *IC*-2 mean SUVR in cortical grey matter.

Correlation with cognitive scores in OASIS Averages weights within SUVR from OASIS were correlated with cognitive scores: logical memory, category fluency, digit span backwards. Mean SUVR was within the centiloid regions, K and IC-2 across MNI space.


Results

Effect size in separating ADNI subgroups

Effect sizes, computed with Hedges' g: 2.25 for *K*, 2.42 for component *IC*-2 and 1.46 for mean cortical SUVR.

Correlation with cognitive scores in OASIS

Hedges'g:	Logical Mer
K	4.65
IC-2	4.70
SUVR _{centil}	4.34

Differences in effect sizes were small but consistent, both models outperforming SUVR, maximum g for IC-2 over K.

References

Whittington 2018:	JNI
Collij2021:	Alz

[§]www.oasis-brains.org *adni.loni.usc.edu 'lmfit.github.io/lmfit-py [‡]www.r-project.org

#61452 (AIC) #65506 (AAIC)

Amsterdam UMC

barcelonaβeta

Conclusions

•		
	4.03	4.11
	4.08	4.21
	3.75	3.53

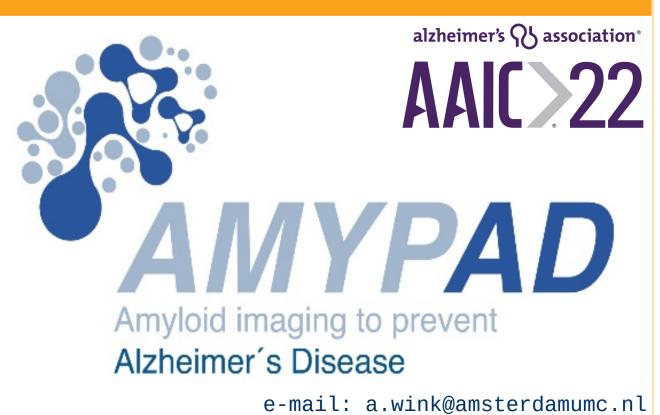
IM 59(5): 822-827 . Dem. 13(1): e12216

We have:

*** * * ***

efpia

im


• reproduced the validity of a whole-brain $A\beta$ accumulation time curve

BRAIN RESEARCH CENTER

- reproduced the map K for A β accumulation capacity in AD for PET-based quantification
- presented a data-driven alternative that does not repeatedly use the sigmoid model
- shown that both methods outperform mean cortical SUVR for identifying ADNI groups
- shown that both methods correlate more strongly with cognition in OASIS controls
- found that the effect sizes reported by datadriven weight map IC-2 are higher than K

The findings in OASIS also suggests that the weights maps can be used across tracers. Our future efforts will focus on establishing tracer independence and statistical validation.

Contact

