



Department of Radiology and Nuclear Medicine, Amsterdam University, Lund, Sweden; <sup>4</sup> Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; <sup>5</sup> Coma Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; <sup>5</sup> Coma Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; <sup>5</sup> Coma Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; <sup>5</sup> Coma Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Sciences Malmö, Lund University, Lund, Sweden; <sup>5</sup> Coma Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; <sup>5</sup> Coma Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Science Group, GIGA-tenter for Alzheimer Research, Department of Neurobiology, Care Science Group, Consciousness, University of Liège, Liège, Liège, Belgium; <sup>6</sup> Centre du Cerveau2, University Hospital del Mar Medical Research Center, Amsterdam, <sup>9</sup> Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain; <sup>9</sup> Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain; <sup>9</sup> Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto, Barcelona, Spain; <sup>9</sup> Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain; <sup>10</sup> Universitat Pompeu Fabra, Barcelona, Spain; <sup>11</sup> Brain Research Center, Amsterdam, Spain; <sup>10</sup> Universitat Pompeu Fabra, Barcelona, Spain; <sup>10</sup> Universita Edinburgh, E Hospital, Malmö, Sweden; <sup>19</sup> Alzheimer Center Amsterdam, Department of Neurology, UCL, London, United Kingdom. <sup>+</sup> These authors contributed equally to this work and share last authorship. # These authors contributed equally to this work and share last authorship.

# Background

- Discordance between CSF and PET AB occurs in 10-20% of the AD *continuum*
- Biomarker discordance might reflect the imbalance between soluble and aggregated Aβ pools
- To date, models characterizing discordance have been suboptimal (i.e., dichotomizing discordance)

# Aims

- develop a continuous measure of AB CSF/PET То imbalance
- To investigate biological and methodological factors that 2) contribute to imbalance
- 3) To examine the predictive value of imbalance on cognition

# Methods

#### Sample



Discovery 261 CU and 561 CI ADNI participants Validation 326 CU and 57 MCI AMYPAD-PNHS participants

#### **Continuous CSF/PET imbalance model (aim 1)**

Hyperbolic regression models between CSF-A $\beta_{42}$  and global amyloid-PET (CL). Standardized residuals as **Aβ-aggregation** scores (negative = more soluble relative to aggregated A $\beta$ , positive = more aggregated relative to soluble  $A\beta$ ).

#### Statistical analyses (aim 2 and 3)

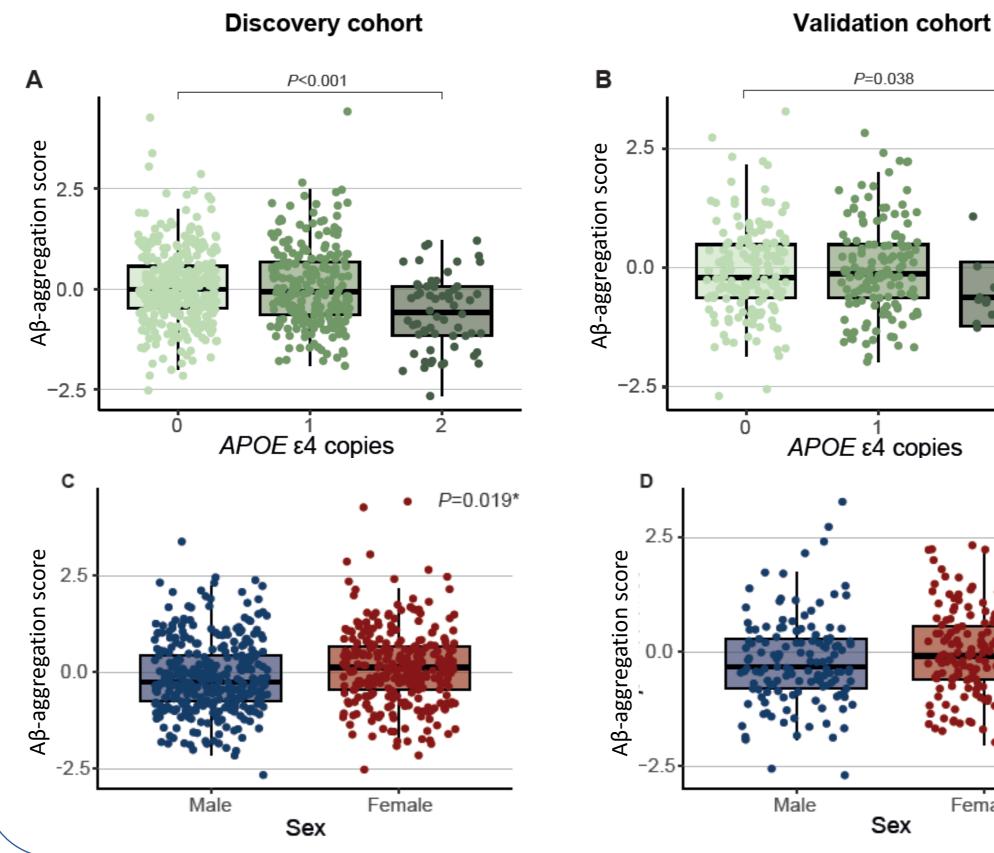
Linear regression models predicting Aβ-aggregation score

- Methodological factors (Δt CSF-PET & ventricular volume)
- Demographics (age, sex, education, APOE-ε4 alleles)
- CSF biomarkers (p-tau, t-tau,  $A\beta_{38}$ ,  $A\beta_{40}$ )
- Vascular burden (WMH volumes)

Adjusted for a model-derived measure of Aβ-progression and ventricular volume. Models of CSF biomarkers and vascular burden were additionally adjusted for age, sex, APOE-ε4 alleles.

Linear regressions and mixed models were performed to predict cognition with Aβ-aggregation scores, covarying for age, sex, education, APOE- $\epsilon$ 4 alleles, ventricular volume, and Aβprogression

# **Biological and methodological factors underlying a continuous amyloid CSF/PET** imbalance model and its association with longitudinal cognition


Sophie E. Mastenbroek<sup>1,2,3†</sup>, Arianna Sala<sup>4,5,6†</sup>, David Vállez García<sup>1,2</sup>, Mahnaz Shekari<sup>7,8,9,10</sup>, Gemma Salvadó<sup>3,7</sup>, Luigi Lorenzini<sup>1,2</sup>, Alle Meije Wink<sup>1,2</sup>, Isadora Lopes Alves<sup>11</sup>, Robin Wolz<sup>12</sup>, Craig Ritchie<sup>13</sup>, Mercé Boada<sup>14,15</sup>, Pieter Jelle Visser<sup>1</sup>, Marco Bucci<sup>4,16</sup>, Gill Farrar<sup>17</sup>, Oskar Hansson<sup>3,18</sup>, Agneta K. Nordberg<sup>4,16</sup>, Rik Ossenkoppele<sup>3,19</sup>, Frederik Barkhof<sup>1,2,20</sup>, Juan Domingo Gispert<sup>7,8,9</sup>, Elena Rodriguez-Vieitez<sup>4#</sup>, Lyduine E. Collij<sup>1,2,3#</sup>, for the Alzheimer's Disease Neuroimaging initiative, for the ALFA study, for the EPAD consortium, On behalf of the FACEHBI study, On behalf of the AMYPAD consortium

| Demographics                  |                  |                   |
|-------------------------------|------------------|-------------------|
|                               | Discovery cohort | Validation cohort |
| Ν                             | 822              | 383               |
| Age                           | 73.0 (7.4)       | 65.2 (6.9)        |
| Female, n (%)                 | 384 (46.7)       | 224 (58.5)        |
| Years of education            | 16.3 (2.6)       | 14.6 (3.8)        |
| MMSE score                    | 27.6 (2.6)       | 28.9 (1.5)        |
| Missing, n (%)                | 0 (0.0)          | 17 (4.4)          |
| <i>APOE</i> -ε4 copies, n (%) |                  |                   |
| 0                             | 451 (54.9)       | 189 (49.3)        |
| 1                             | 293 (35.6)       | 159 (41.5)        |
| 2                             | 78 (9.5)         | 33 (8.6)          |
| Missing, n (%)                | 0 (0.0)          | 2 (0.5)           |
| Interval CSF/PET (days)       | 0.19 (17.1)      | 95.3 (123.6)      |
| CSF-Aβ <sub>42</sub> *        | 1200 (631)       | -0.6 (1.3)        |
| Global amyloid (CL)           | 40.3 (44.1)      | 17.4 (27.8)       |

\* Raw values are shown for the discovery cohort, z-scores for the validation cohort

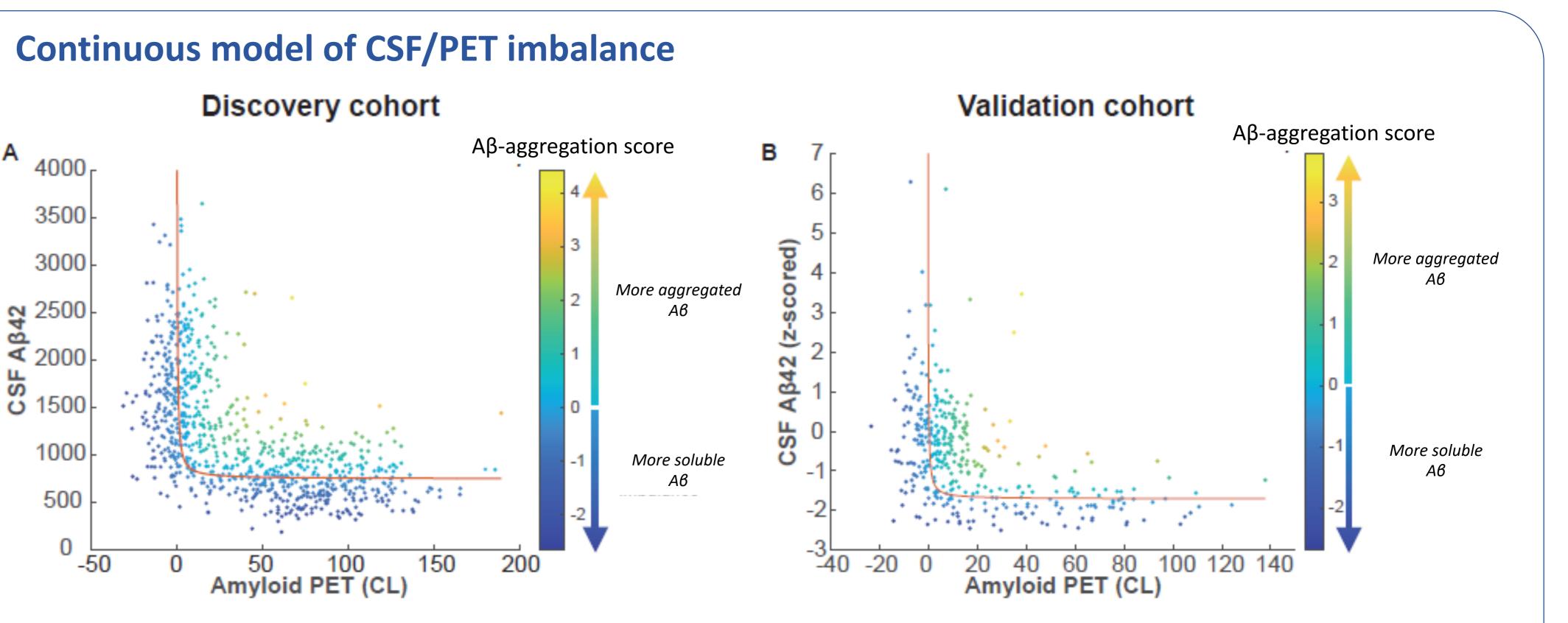
Adequate model fit in both cohorts (R<sup>2</sup>=0.94) illustrates the applicability across heterogeneous datasets. A wide range of Aβ-aggregation scores are observed across the hyperbolic model, indicating that imbalance permeates the entire Aβ accumulation process, with a similar Aβ-aggregation range across cohorts

### **APOE**-ε4 carriership and sex are associated with Aβ-aggregation scores



# Conclusion

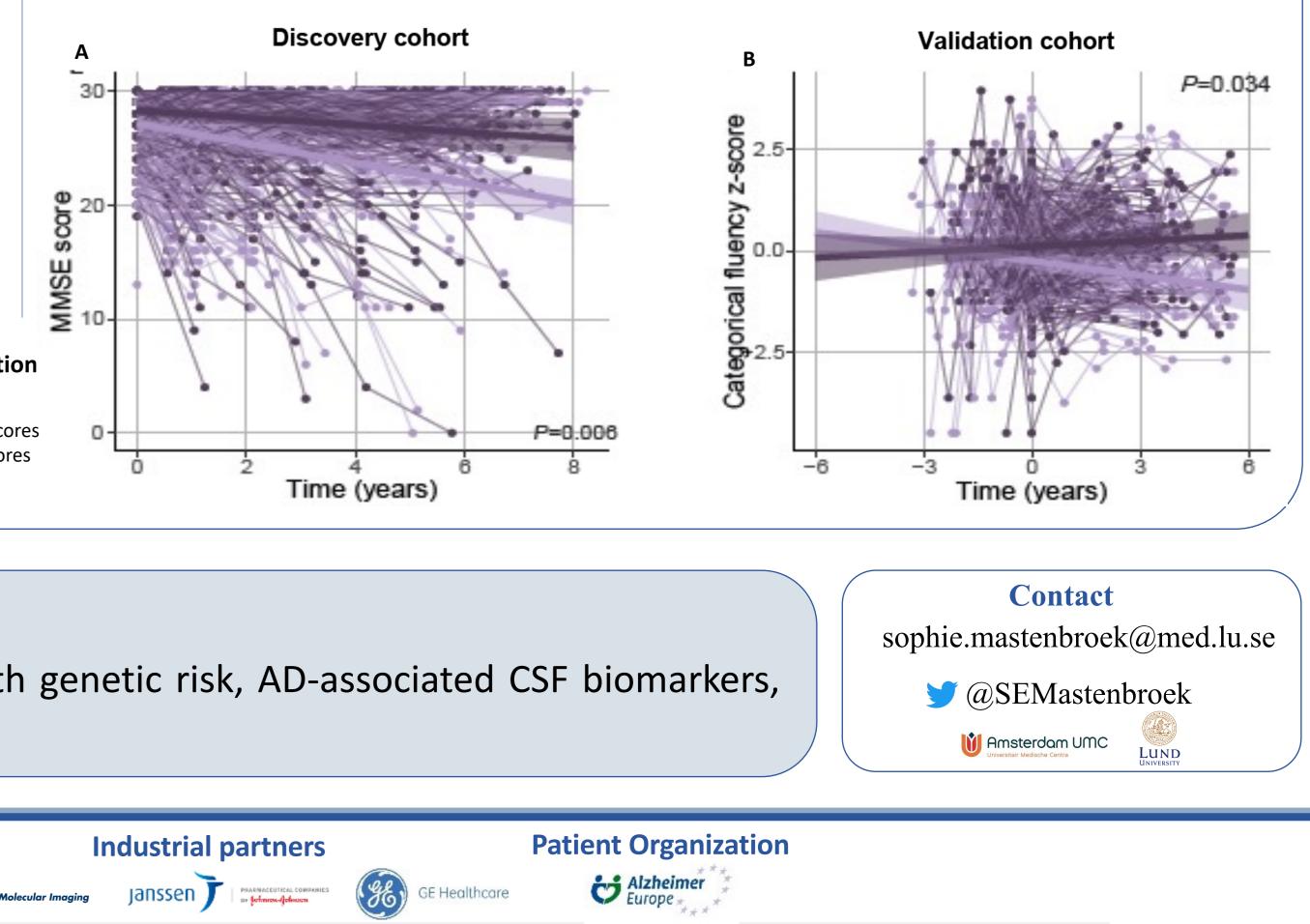
A continuous measure of soluble/aggregated AB biomarker imbalance was consistently associated with genetic risk, AD-associated CSF biomarkers, and cognition, possibly reflecting disease heterogeneity.




www.imi.europa.eu

Female

Sex






discovery cohort, Aβaggregation was negatively related to carrying 2 APOE- $\epsilon$ 4 alleles (A.  $\beta$ =-0.56), and male sex (C.  $\beta$ =-0.18). In addition, a lower  $A\beta$ -aggregation score was associated with larger

#### **Aβ-aggregation score predicts longitudinal cognition**

At baseline, higher Aβ-aggregation scores were predictive of better cognitive performance in both cohorts. Higher A<sub>β</sub>-aggregation scores were predictive of slower cognitive decline over time on MMSE in the discovery cohort (A.  $\theta$ =0.13) and on a categorical fluency test in the validation cohort (**B**.  $\theta$ =0.04).

