

AI-enhanced Centiloid quantification of amyloid PET images

Pierrick Bourgeat, Jurgen Fripp, Leo Lebrat, Ying Xia, Azadeh Feizpour, Timothy Cox, Georgios Zisis, Ashley Gillman, Manu S Goyal, Duygu Tosun, Tammie Ls Benzinger, Pamela LaMontagne, Michael Breakspear, Michelle K Lupton, Cathy Short, Robert Adam, Joanne S Robertson, Reisa Sperling, Sid E O'Bryant, Sterling C Johnson, Clifford R Jack Jr, Christopher G Schwarz, Frederik Barkhof, Gill Farrar, Ariane Bollack, Lyduine E Collij, Susan Landau, Robert Koepp; Alzheimer's Disease Neuroimaging Initiative; OASIS3; A4/LEARN Study Team; AMYPAD consortium; Health and Aging Brain Study (HABS-HD) Study Team; Mayo Clinic Study of Aging; WRAP; ADNI-DOD; PISA; ADNeT; AIBL research group; John C Morris, Michael W Weiner, Victor L Villemagne, Colin L Masters, Christopher C Rowe, Vincent Dore

Abstract:

Introduction: The Centiloid scale is the standard for amyloid (A β) PET quantification in research and clinical settings. However, variability between tracers and scanners remains a challenge.

Methods: This study introduces DeepSUVR, a deep learning method to correct Centiloid quantification, by penalizing implausible longitudinal trajectories during training. The model was trained using data from 2,129 participants (7,149 A β positron emission tomography [PET] scans) in the Australian Imaging, Biomarkers and Lifestyle Study of ageing (AIBL)/Alzheimer's Disease Neuroimaging Initiative (ADNI) and validated using 15,807 A β PET scans from 10,543 participants across 10 external datasets.

Results: DeepSUVR increased correlation between tracers, and reduced variability in the A β -negatives. It showed significantly stronger association with cognition, visual reads, neuropathology, and increased longitudinal consistency between studies. DeepSUVR also increased the effect size for detecting small treatment related slowing of amyloid accumulation in the A4 study.

Discussion: DeepSUVR substantially advances A β PET quantification, outperforming all standard approaches, which is particularly important for clinical decision making and to detect subtle or early changes in A β .

11 February 2026 – Alzheimer's & Dementia

<https://doi.org/10.1002/alz.71162>

